Sediment Burial Intolerance of Marine Macroinvertebrates.
نویسندگان
چکیده
The marine environment contains suspended particulate matter which originates from natural and anthropogenic sources. Settlement of this material can leave benthic organisms susceptible to smothering, especially if burial is sudden i.e. following storms or activities such as dredging. Their survival will depend on their tolerance to, and their ability to escape from burial. Here we present data from a multi-factorial experiment measuring burial responses incorporating duration, sediment fraction and depth. Six macroinvertebrates commonly found in sediment rich environments were selected for their commercial and/or conservation importance. Assessments revealed that the brittle star (Ophiura ophiura), the queen scallop (Aequipecten opercularis) and the sea squirt (Ciona intestinalis) were all highly intolerant to burial whilst the green urchin (Psammichinus miliaris) and the anemone (Sagartiogeton laceratus), showed intermediate and low intolerance respectively, to burial. The least intolerant, with very high survival was the Ross worm (Sabellaria spinulosa). With the exception of C. intestinalis, increasing duration and depth of burial with finer sediment fractions resulted in increased mortality for all species assessed. For C. intestinalis depth of burial and sediment fraction were found to be inconsequential since there was complete mortality of all specimens buried for more than one day. When burial emergence was assessed O. ophiura emerged most frequently, followed by P. miliaris. The former emerged most frequently from the medium and fine sediments whereas P. miliaris emerged more frequently from coarse sediment. Both A. opercularis and S. laceratus showed similar emergence responses over time, with A. opercularis emerging more frequently under coarse sediments. The frequency of emergence of S. laceratus increased with progressively finer sediment and C. intestinalis did not emerge from burial irrespective of sediment fraction or depth. Finally, and perhaps unsurprisingly, the greatest ability to emerge from burial in all other species was from shallow (2 cm) burial. Although survival was consistently highly dependent on duration and depth of burial as expected, emergence behaviour was not as easily predictable thereby confounding predictions. We conclude that responses to burial are highly species specific and therefore tolerance generalisations are likely to be oversimplifications. These data may be used to inform environmental impact models that allow forecasting of the cumulative impacts of seabed disturbance and may provide mitigation measures for the sustainable use of the seabed.
منابع مشابه
Buried Alive: The Behavioural Response of the Mussels, Modiolus modiolus and Mytilus edulis to Sudden Burial by Sediment
Sedimentation in the sea occurs through natural processes, such as wave and tidal action, which can be exacerbated during storms and floods. Changes in terrestrial land use, marine aggregate extraction, dredging, drilling and mining are known to result in substantial sediment deposition. Research suggests that deposition will also occur due to the modern development of marine renewable energy. ...
متن کاملPreservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?
The burial of organic matter (OM) in marine sediments represents the major link between “active” surface pools of carbon in the oceans, atmosphere, on land, and in marine sediment, and carbon pools that cycle on much longer, geologic time scales (i.e., carbon in sedimentary rock, coal, and petroleum deposits). It also plays some role in controlling atmospheric CO2 and O2 on these long time scal...
متن کاملExperimental assessment of critical anthropogenic sediment burial in eelgrass Zostera marina.
Seagrass meadows, one of the world's most important and productive coastal habitats, are threatened by a range of anthropogenic actions. Burial of seagrass plants due to coastal activities is one important anthropogenic pressure leading to the decline of local populations. In our study, we assessed the response of eelgrass Zostera marina to sediment burial from physiological, morphological, and...
متن کاملSource and diagenesis of Middle Jurassic marine mudstones, Kopet-Dagh Basin, NE Iran
Middle Jurassic fluvio-deltaic and turbiditic mudstones of the Kashafrud Formation, are important hydrocarbon sources in the gas-rich Kopet-Dagh Basin, northeast Iran. Clay mineral assemblages are important for interpretation of sediment provenance and for understanding burial diagenetic cementation in sandstones. The clay mineral assemblages in mudrocks in two areas, Saleh-Abad and Senjedak, w...
متن کاملThe Recycling of Biogenic Material at the Seafloor
7.02.3 ORGANIC MATTER DECOMPOSITION IN SEDIMENTS 40 7.02.3.1 Electron Acceptors for Sedimentary Organic Matter Oxidation 43 7.02.3.2 The Stoichiometry of Oxic Sedimentary Organic Matter Decomposition 45 7.02.3.3 The Depth Distribution of Organic Matter Oxidation in the Sediment Column 48 7.02.3.4 The Response Time for Organic Matter Oxidation 51 7.02.3.5 The Burial of Organic Matter in Marine S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 11 2 شماره
صفحات -
تاریخ انتشار 2016